Heat rejection
Contents |
[edit] Introduction
Waste heat can be produced by any process that uses energy. In buildings, this might include:
- Heating, ventilation and air-conditioning systems (HVAC).
- Refrigeration.
- Machinery, equipment and industrial processes.
Where this waste heat is at a low-temperature, it may have limited useful capacity for work and so it may be rejected to the environment. However, if it is suitable for use in another process, a portion of heat that would otherwise be wasted might be reused. This is known as heat recovery.
Heat rejection methods include, air cooing, evaporative cooling, and ground coupling.
[edit] Air cooling
Air cooling can be as simple as using mechanical or natural ventilation to reject excess heat to the outside.
Typically in heating, ventilation and air-conditioning systems, air cooling rejects heat to the outside air by circulating 'outside' air over coils containing 'hot' fluid returning from the building. Heat is transferred from the coil to the air which is then rejected to the outside. See cooling for more information.
[edit] Evaporative cooling
When water evaporates, it absorbs significant amounts of heat energy (latent heat), which produces a cooling effect in its surroundings.
Direct evaporative coolers (sometimes referred to as sump coolers, swamp coolers, or desert coolers) draw hot, dry air through a continually dampened pad and supply cool, humid air.
Indirect evaporative cooling can be achieved by using a heat exchanger to cool supply air, by spraying water over the cooling coils of a conventional chiller or by cooling towers.
Cooling towers reject heat through the evaporation of water in a moving air stream within the cooling tower. The temperature and humidity of the air stream increases through contact with the warm water, and this air is then discharged. The cooled water is collected at the bottom of the tower. This process can achieve lower temperatures than air-cooled heat rejection systems. See Cooling towers for more information.
[edit] Ground coupling
Earth-to-air heat exchangers draw air through buried ducts or tubes (sometimes referred to as earth tubes). As the temperature of the ground below 3m is practically constant, it can be used to substantially reduce air temperatures. See Earth-to-air heat exchanger for more information.
Open or closed loop water to air heat exchangers, similarly exploit the relatively stable temperature of the earth to provide cool water. See Ground energy options for more information.
[edit] Heat recovery
Heat recovery is the process of collecting and re-using heat that would otherwise be lost. This can help reduce the energy consumption of the process or the heat can be used elsewhere, reducing running costs and carbon emissions. See Heat recovery for more information.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
What they are, how they work and why they are popular in many countries.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.
























